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Problem	  1:	  	  Without	  prior	  knowledge,	  	  
	   	   	  	  	  	  	  	  RL	  in	  a	  new	  task	  is	  slow	  

	  

Idea:	  	  Reuse	  knowledge	  from	  	  
	   	  previously	  learned	  tasks	  

Mo;va;on	  

G

	  
standard	  

“tabula	  rasa”	  	  
ini>aliza>on	   ini>aliza>on	  

via	  transfer	  

We	  focus	  on	  the	  lifelong	  learning	  case:	  
•  Agent	  learns	  mul;ple	  tasks	  consecu;vely	  
•  Want	  a	  fully	  online	  method	  with	  sublinear	  regret	  
	  
	  

… … … … 

Time	  

Current	  Task	  
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Problem	  2:	  Robot	  control	  policies	  must	  obey	  safety	  constraints	  
•  Prevent	  damage	  to	  the	  robot	  or	  environment	  
•  Limit	  joint	  veloci;es	  
•  Avoid	  catastrophic	  failure	  

Idea:	  Incorporate	  constraints	  directly	  into	  policy	  op;miza;on	  

Mo;va;on	  
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Contribu;on	  

Safe	  lifelong	  policy	  gradient	  reinforcement	  learner	  
•  Learns	  mul;ple,	  consecu;ve	  RL	  tasks	  online	  
•  Operates	  in	  an	  adversarial	  seNng	  
•  Ensures	  that	  policies	  respect	  given	  safety	  constraints	  
•  Exhibits	  sublinear	  regret	  for	  lifelong	  policy	  search	  
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•  Agent	  interacts	  with	  environment,	  taking	  consecu;ve	  ac;ons	  
•  PG	  methods	  support	  con;nuous	  state	  and	  ac;on	  spaces	  

–  Have	  shown	  recent	  success	  in	  applica;ons	  to	  robo;c	  control	  
[Kober	  &	  Peters	  2011;	  Peters	  &	  Schaal	  2008;	  SuYon	  et	  al.	  2000]	  

G	  

reward	  	  
func;on	  

agent	  

probabilis;c	  
transi;on	  

Agent	  makes	  sequen;al	  decisions	  

Background:	  Policy	  Gradient	  Methods	  for	  Control	  
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Background:	  Policy	  Gradient	  Methods	  for	  Control	  

•  Agent	  interacts	  with	  environment,	  taking	  consecu;ve	  ac;ons	  
•  PG	  methods	  support	  con;nuous	  state	  and	  ac;on	  spaces	  

–  Have	  shown	  recent	  success	  in	  applica;ons	  to	  robo;c	  control	  
[Kober	  &	  Peters	  2011;	  Peters	  &	  Schaal	  2008;	  SuYon	  et	  al.	  2000]	  

Goal:	  find	  policy	  	  	  	  	  	  	  that	  minimizes	  	  l(↵) =
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Background:	  Online	  Learning	  &	  Regret	  Analysis	  

Regret	  Minimiza>on	  Game:	  	  Each	  round	  j	  = 1 ... R,	  	  
a.)	  agent	  chooses	  a	  predic;on	  	  	  	  	  	  	  ,	  and	  	  	  	  	  	  
b.)	  environment	  (i.e.,	  the	  adversary)	  chooses	  a	  loss	  func;on	  	  

	  

	  

Goal:	  minimize	  cumula;ve	  regret	  (modified	  for	  mul;-‐task	  case)	  

	  

	  
	  

lj

↵j

loss	  of	  task	  t	  
at	  round	  j!

RR =
RX

j=1

ltj (↵j)� inf
✓2K

2

4
RX

j=1

ltj (✓)

3

5

agent’s	  total	  loss	   best	  fixed	  loss	  in	  hindsight	  
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Lifelong	  Machine	  Learning	  

Policy parameters 

Task-specific coefficients shared 
basis 

Each task has 
associated safety 
constraints 

Lifelong	  Learning	  System	  

2.)	  Knowledge	  is	  	  
transferred	  from	  	  
previously	  	  
learned	  tasks	  

3.)	  New	  
knowledge	  	  
is	  stored	  for	  
future	  use	  

4.)	  Exis;ng	  
knowledge	  	  
is	  refined	  

learned	  policy  

⇡↵tj

previously	  learned	  
knowledge Lj -1 

1.)	  Tasks	  are	  received	  	  
consecu;vely	  

learned	  tasks	  from	  previous	  rounds	   future	  learning	  rounds	  

... ... tj tj-1 tj-2 tj-3 tj+1 tj+2 tj+3 

trajectories	  for	  
task	  tj!

current	  round	  j!
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Task	  Model	  

•  For	  a	  specific	  task	  tj ,	  find	  the	  op;mal	  policy	  

•  The	  parameters	  	  	  	  	  	  	  	  	  	  are	  linear	  	  
combina;ons	  of	  a	  shared	  basis	  L 

	  	  	  	  Policy	  gradient	  objec;ve:	   l(↵) =
nX
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Safety	  Constraints	  on	  Policy	  

Each	  task	  tj	  has	  associated	  safety	  constraints	  
such	  that	  
	  

Atj↵tj  btj

(Atj , btj )
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Goal:	  	  minimize	  total	  cumula;ve	  loss-‐so-‐far	  

Lifelong	  Learning	  Problem	  Defini;on	  

s.t. Atj↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q

safety	  constraints	  

ensure	  “informa;ve”	  policies	  by	  bounding	  ||	  	  L||	  	  F	  	  

Online	  Mul>-‐task	  Objec>ve:	  	  	  Aler	  observing	  r	  rounds,	  

tj ntjEach	  round,	  we	  observe	  	  	  	  	  	  	  	  	  trajectories	  of	  task	  tj !
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Online	  Formula;on	  

Let	  
We	  can	  re-‐write	  the	  objec;ve	  as:	  

✓ = [vec(L), vec(S)]T

s.t. Atj↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q
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Online	  MTL	  Objec;ve	  

✓r+1 = argmin
✓2K

⌦r(✓)

set	  of	  safe	  policies	  

⌦0(✓) = µ2

dkX

i=1

✓2
i + µ1

dk+1X

i=1

✓2
i

⌦j(✓) = ⌦j�1(✓) + ⌘tj ltj (✓)
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Solu;on	  Strategy	  	  

✓̃r+1

Step	  2:	  Constrained	  Solu;on	  
Idea:	  Alternate	  to	  learn	  projec;on	  of	  	  	  	  	  	  	  	  	  	  

onto	  the	  constraint	  set	  

Problem:	  Computa;onally	  Expensive	  	  

Step	  1:	  Unconstrained	  Solu;on	  
a.)	  Update	  L,	  holding	  S	  fixed	  

L�+1 = L� � ⌘�LrLer(L,S)

s
(tj)
�+1 = s

(tj)
� � ⌘�SrLer(L,S)

b.)	  Update	  S,	  holding	  L fixed	  

unconstrained	  solu;on	  

✓̃r+1

13	  H.	  Bou	  Ammar,	  R.	  Tutunov,	  E.	  Eaton	  



Constrained	  Projec;on	  Learning	  
Learning	  the	  constrained	  solu;on	  is	  equivalent	  to:	  

✓̂r+1 = argmin
✓2K

B⌦r,K

⇣
✓, ✓̃r+1

⌘

Bregman	  	  
divergence	  	  

Reduce	  computa;onal	  complexity	  by	  linearizing	  losses	  

ltr (û) = f̂tr

���
T

✓̂r

û linearized	  loss	  around	  constrained	  
solu;on	  to	  previous	  round	  

f̂tr

���
✓̂r

=


r✓ltr (✓)

���
✓̂r

, ltr (✓)
���
✓̂r

�r✓ltr (✓)
���
✓̂r

✓̂r

�T

first-‐order	  term	  
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Constrained	  Projec;on	  Learning	  
Using	  linearized	  losses,	  the	  constrained	  solu;on	  simplifies	  to:	  	  

✓̂r+1 = argmin
✓2K

B⌦0,K

⇣
✓, ✓̃r+1

⌘

Constrained	  Problem	  for	  Determining	  Safe	  Policies	  

min
L,S

µ1||S||2F + µ2||L||2F + 2µ1tr

✓
S
���
T

✓̃r+1

S

◆
+ 2µ2tr

✓
L
���
T

✓̃r+1

L

◆

s.t. AtjL↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q

Solved	  via	  (1)	  a	  2nd	  order	  cone	  program	  for	  S	  and	  
(2)	  a	  semi-‐definite	  program	  for	  L	  	  	  
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Regret	  Guarantees	  

Proof	  Sketch:	   Bound	  	  

constant	   bounded	  in	  terms	  
	  of	  local	  losses	  

constraints	  
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ltj (ˆ✓j)� ltj (u) = O(

p
R) for any u 2 K

Aler	  R	  rounds,	  our	  algorithm	  aYains	  sublinear	  regret:	  
Theorem	  (Sublinear	  Regret):	  
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Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret

of L and that the constraints are met. This leads to
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6. Experimental Validation
To validate the empirical performance of our method, we
applied our safe online PG algorithm to learn multiple con-
secutive control tasks on three dynamical systems (Fig-
ure 1). To generate multiple tasks, we varied the parameter-
ization of each system, yielding a set of control tasks from
each domain with varying dynamics. The optimal control
policies for these systems vary widely with only minor
changes in the system parameters, providing substantial di-
versity among the tasks within a single domain.

Figure 1. Dynamical systems used in the experiments: a) simple
mass system (left), b) cart-pole (middle), and c) quadrotor un-
manned aerial vehicle (right).

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring con-
stant k in N/m, the damping constant d in Ns/m and the
mass m in kg. The system’s state is given by the position x

and ˙

x of the mass, which varies according to a linear force
F . The goal is to train a policy for controlling the mass in
a specific state gref = hxref, ˙xrefi.
Cart Pole: The cart-pole (CP) has been used extensively
as a benchmark for evaluating RL methods (Busoniu et al.,
2010). CP dynamics are characterized by the cart’s mass
mc in kg, the pole’s mass mp in kg, the pole’s length in
meters, and a damping parameter d in Ns/m. The state is
given by the cart’s position x and velocity ˙

x, as well as the
pole’s angle ✓ and angular velocity ˙

✓. The goal is to train a
policy that controls the pole in an upright position.

6.1. Experimental Protocol
We generated 10 tasks for each domain by varying the sys-
tem parameters to ensure a variety of tasks with diverse op-

timal policies, including those with highly chaotic dynam-
ics that are difficult to control. We ran each experiment for
a total of R rounds, varying from 150 for the simple mass
to 10, 000 for the quadrotor to train L and S, as well as
for updating the PG-ELLA and PG models. At each round
j, the learner observed a task tj through 50 trajectories of
150 steps and updated L and stj . The dimensionality k of
the latent space was chosen independently for each domain
via cross-validation over 3 tasks, and the learning step size
for each task domain was determined by a line search after
gathering 10 trajectories of length 150. We used eNAC, a
standard PG algorithm, as the base learner.

We compared our approach to both standard PG (i.e.,
eNAC) and PG-ELLA (Bou Ammar et al., 2014), examin-
ing both the constrained and unconstrained variants of our
algorithm. We also varied the number of iterations in our al-
ternating optimization from 10 to 100 to evaluate the effect
of these inner iterations on the performance, as shown in
Figures 2 and 3. For the two MTL algorithms (our approach
and PG-ELLA), the policy parameters for each task tj were
initialized using the learned basis (i.e., ↵tj = Lstj ). We
configured PG-ELLA as described by Bou Ammar et al.
(2014), ensuring a fair comparison. For the standard PG
learner, we provided additional trajectories in order to en-
sure a fair comparison, as described below.

For the experiments with policy constraints, we generated
a set of constraints (At, bt) for each task that restricted the
policy parameters to pre-specified “safe” regions, as shown
in Figures 2(c) and 2(d). We also tested different values for
the constraints on L, varying p and q between 0.1 to 10;
our approach showed robustness against this broad range,
yielding similar average cost performance.

6.2. Results on Benchmark Systems
Figure 2 reports our results on the benchmark simple mass
and cart-pole systems. Figures 2(a) and 2(b) depicts the
performance of the learned policy in a lifelong learning set-
ting over consecutive unconstrained tasks, averaged over
all 10 systems over 100 different initial conditions. These
results demonstrate that our approach is capable of outper-
forming both standard PG (which was provided with 50
additional trajectories each iteration to ensure a more fair
comparison) and PG-ELLA, both in terms of initial perfor-
mance and learning speed. These figures also show that the
performance of our method increases as it is given more
alternating iterations per-round for fitting L and S.

We evaluated the ability of these methods to respect safety
constraints, as shown in Figures 2(c) and 2(d). The thicker
black lines in each figure depict the allowable “safe” region
of the policy space. To enable online learning per-task, the
same task tj was observed on each round and the shared
basis L and coefficients stj were updated using alternating
optimization. We then plotted the change in the policy pa-

Cart	  Pole	  Simple	  Mass	   Quadrotor	  

Experiments	  
Goal:	  	  Learn	  policies	  for	  consecu;ve	  control	  tasks	  on	  

three	  types	  of	  dynamical	  systems	  
	  
	  
	  
	  
	  

Generated	  10	  tasks	  per	  system	  by	  varying	  specifica;ons	  
	  

Compared	  to	  (1)	  standard	  PG	  and	  	  
(2)	  PG-‐ELLA	  lifelong	  learner	  [Bou	  Ammar	  et	  al,	  ICML’14]	  
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Results:	  	  Performance	  

Safe	  lifelong	  learner	  shows	  superior	  performance	  

Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.

Quadrotor	  
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Results:	  	  Safety	  Constraint	  Enforcement	  
Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.

Trajectory	  Cart	  Pole	  

Enforces	  safety	  constraints,	  unlike	  alterna;ve	  methods	  
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Our	  approach	  immediately	  projects	  policies	  to	  safe	  regions,	  
even	  during	  the	  policy	  search	  process	  
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Results:	  	  Safety	  Constraint	  Enforcement	  
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Conclusion	  

The	  safe	  lifelong	  policy	  gradient	  learner:	  
•  Fully	  online	  learning	  of	  mul;ple,	  consecu;ve	  RL	  tasks	  
•  Ensures	  “safe”	  policies	  by	  respec;ng	  safety	  constraints	  
•  Exhibits	  sublinear	  regret	  for	  lifelong	  policy	  search	  
•  Validated	  on	  benchmark	  dynamical	  systems	  and	  

quadrotor	  control	  
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Constrained	  Solu;on	  	  
Alternate	  to	  determine	  safety-‐constrained	  L	  and	  S:	  

Semi-‐Definite	  Program	  for	  L:	  

Second-‐Order	  Cone	  Program	  for	  S:	  
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