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Introduction:  Multi-view Learning 

 Using multiple different views improves learning 

 Most current methods assume a complete 
bipartite mapping between the views 
– This assumption is often unrealistic 
– Many applications yield only a partial mapping 

 We focus on multi-view learning with a partial 
mapping between views 

Multimodal Data Fusion and Retrieval 
(field reports, websites) 

Resolving Multiple Sensors 
Long-range 3D LIDAR 

Medium-range LIDAR 

GPS/IMU 

Side short-range 
scanning LIDAR 

Long-range LIDAR 

Stereo Camera 

Short-range 
LIDAR 

Rear short-
range 
scanning 
LIDAR  

Images Text 
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Background:  Constrained Clustering 

 Our approach uses constrained clustering as the base 
learning approach 
– Uses pairwise constraints to specify  

 the relative cluster membership 
•   Must-link constraint → same-cluster 

•   Cannot-link constraint → different-cluster 

– Notation 

 PCK-Means Algorithm (Basu et al. 2002) 
–  Incorporates constraints into K-Means objective function 

– Treats constraints as soft (can be violated with penalty w) 

 MPCK-Means algorithm (Bilenko et al. 2004) 
– Also automatically learns distance metric for each cluster 
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Our Approach 

  Input:   – Data                                                   for view V

    – Bipartite mapping between views  

   – Set of constraints within each view        and  

  Learn a cohesive clustering across views that respects the 
given constraints and (incomplete) mapping 
– For each view: 

  1.)  Cluster the data, obtaining 
   a model for the view 

  2.)  Propagate constraints within 
   the view based on that model 

  3.)  Transfer those constraints 
   across views to affect learning 

– Repeat this process until convergence 
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Multi-view Clustering with Constraint Propagation 

Must-link Cannot-link 
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Constraint Propagation 

 Given constraint 

  Infer constraint between xi and xj 
 if they are sufficiently similar to 
 according to a local similarity 
 measure 

 Weight      of constraint              given by the radial basis 

 function centered at            with covariance matrix shaped  

 like clustering model: 

– Each                , similarity measured in 

–  xi assumed closest to xu (same for xj and xv) since order matters 

xi 

xj 

xu 
xv 
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Constraint Propagation 

From before:  propagate constraint                         
                     to              with weight 

 Assuming independence between 
 the endpoints yields 

– The covariance matrix Σu controls the distance of propagation 

–  Intuitively, constraints near the center of the cluster µh have high 
confidence and should be propagated a long distance 

–  Idea:  scale cluster covariance Σh by distance from centroid µh  



Multi-View Constraint Propagation Algorithm 

Input:       – Data                                                   for views A and B
    – Bipartite mapping between views  

   – Set of constraints within each view       and  

Initialize the propagated constraints               ,  
Initialize constraint mapping functions           ,              from     
Repeat until convergence 

for each view V    (let U denote the opposing view)

  1.)  Form the unified set of constraints 

  2.)  M-step:  Cluster view V using constraints  

  3.)  E-step:  Re-estimate the set of propagated constraints         using the 
 updated clustering 

end for 

Extension to multiple views: 
8 
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Evaluation 

 Tested on a combination of synthetic and real data sets 

– Constraint propagation works best in low-dimensions (due to curse of  
 dimensionality), so we use the           spectral features 

 Compare to: 
– Direct Mapping:  equivalent to current methods for multi-view learning 

– Cluster Membership:  infer constraints based on the current clustering 

– Single View:  clustering each view in isolation 

Data Set 
Name Description Num 

Instances 
Num 

Dimensions 
Num 

Clusters 
Propagation 
Threshold 

Four Quadrants Synthetic 200/200 2 2 0.75 

Protein Bioinformatics 67/49 20 3 0.5 

Letters/Digits Character 
Recognition 227/317 16 3 0.95 

Rec/Talk  
(20 newsgroups) 

Text 
Categorization 100/94 50 2 0.75 
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Results 



Results:  Improvement over Direct Mapping 
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 Figure omits results on Four 
Quadrants using PCK-Means 
– Average gains of 21.3% 

– Peak gains above 30% 

 Whiskers show peak gains 

 Constraint propagation still 
maintains a benefit even with a 
complete mapping 
– We hypothesize that it behaves 

similarly to spatial constraints (Klein et 
al., 2002) by warping the underlying 
space to improve performance  



Results:  Effects of Constraint Propagation 
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 Few incorrect constraints are inferred by the propagation 

 Constraint propagation works slightly better for cannot-link 
constraints than must-link constraints 
– Counting Argument:  there are many more chances for a cannot-link 

constraint to be correctly propagated than a must-link constraint 
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Conclusion and Future Work 

 Constraint propagation improves multi-view constrained 
clustering under a partial mapping between views 

 Provides the ability for the user to interact with one view, and 
for the interaction to affect the other views 
– E.g., the user constrains images, and it affects the clustering of texts 

 Future work: 
–  Inferring mappings from alignment 

 of manifolds underlying views 

– Scaling up multi-view learning to 
 many views, each with very few 
 connections to other views 

– Using transfer to improve learning 
 across distributions under a partial 
 mapping between views 
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